Series of lectures on Bayesian selective inference
Lecture 1: Selective inference

Daniel Yekutieli

Statistics and OR
Tel Aviv University

Spring School of Research Unit “Structural Inference in Statistics”,
17-21 March 2014, Konigs Wusterhausen

Yekutieli (TAU) 1/57



Lectures on Bayesian selective inference

1. Selective inference
2. Bayesian FDR controlling testing procedure
3. Optimal exact tests for complex alternative hypotheses

4. Selection-Adjusted Bayesian Inference
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Plan for this talk

1. Benjamini and Hochberg *95
» FDR and the BH procedure

2. Selective inference

» simultaneity, post-hoc analysis and FDR control
» False Coverage-statement Rate control and BH procedure

3. Bayesian FDR

» Connection to selective inference, frequentist FDR and BH procedure
» How do we control the Bayesian FDR?
» Connection to BH procedure
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BH ‘95

J. R. Statist. Soc. B (1995)
57, No. 1, pp. 289-300

Controlling the False Discovery Rate: a Practical and Powerful
Approach to Multiple Testing

By YOAV BENJAMINI{ and YOSEF HOCHBERG

Tel Aviv University, Israel

[Received January 1993. Revised March 1994]

SUMMARY

The common approach to the multiplicity problem calls for controlling the familywise
error rate (FWER). This approach, though, has faults, and we point out a few. A different
approach to problems of multiple significance testing is presented. It calls for controlling
the expected proportion of falsely rejected hypotheses —the false discovery rate. This error
rate is equivalent to the FWER when all hypotheses are true but is smaller otherwise. There-
fore, in problems where the control of the false discovery rate rather than that of the
FWER is desired, there is potential for a gain in power. A simple sequential Bonferroni-
type procedure is proved to control the false discovery rate for independent test statistics,
and a simulation study shows that the gain in power is substantial. The use of the new
procedure and the appropriateness of the criterion are illustrated with examples.

Keywords: BONFERRONI-TYPE PROCEDURES; FAMILYWISE ERROR RATE; MULTIPLE-
COMPARISON PROCEDURES; p-VALUES
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BH ‘95

“When pursuing multiple inferences, researchers tend to select the
(statistically) significant ones for emphasis, discussion and support of
conclusions.”

“. .. To control this multiplicity (selection) effect , classical multiple-
comparison proceudres aim to control the probability of committing any
type L error ...”

“ ... In this work we suggest a new point of view on the problem of
multiplicity. . .. a desirable error to control may be the expected
proportion of errors among the rejected hypotheses, which we term the
false discovery rate (FDR).”
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BH ‘95

BH ‘95 multiple testing framework

e m tested null hypotheses H; - - - Hy,

e my null hypotheses (P; ~ U0, 1)),
m; = m — my false null hypotheses

e Rejecting a null hypothesis is a discovery, a true discovery is rejecting a
false null hypothesis and a false discovery is erroneously rejecting a true
null hypothesis

e R is the number of discoveries and V is the number of false discoveries

rpR—F0. o]0 ifR=0
-7 T lV/R ifR>0

o cf. FWE =Pr(V > 0)
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BH ‘95

Level g BH procedure

1. Sort the p-values P(l) < P(Z) <-.. < P(m)
2. Compare P(; with i-q/m
3. Let r=max{i: Py <i-q/m}

4. Reject H(l) .. ~H(r)
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BH ‘95

True null and False null p-values simulation

Effect vector g = (11 -+ i)

fori=1---mgy,u =0

fori=mo+1---m,pu; =3

Vector of effect Estimators Z = (Z; - - - Z,,), Z; % N(pi, 1).
P-value vector P = (Py - - Py), P = 1 — ®(Z)),

testing Ho; : 6; =0vs. Hy; : 0; > 0.
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BH ‘95

Py - - Py true null p-values, Py - - - Py false null p-values

p-value
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BH ‘95

Level g = 0.05 BH procedure

p-value
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BH ‘95

Compare with @ = 0.05 Bonferroni procedure

p-value
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BH ‘95

Py - - Pygp true null p-values

p-value
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BH ‘95

P; - - - Pyy true nulls, Py - - - P1oo false nulls

p-value
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Same simulation (mg/m = 0.9) but now m = 10*

p-value
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BH ‘95

Same simulation but now m = 10°

p-value
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BH ‘95

Is the BH procedure new?

Simes ‘86
1. Sort the p-values  P(jy < Py) < --- < Py
2. Compare P withi-gq/m

300 Ji: Py <i- g/m then reject the global null that
H, --- H,, are true null hypotheses.
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BH ‘95

BH procedure — FDR control

BH ‘95:
e Independence FDR < myg-q/m
Benjamini and Yekutieli *01:

e Independence FDR = myg - q/m
e Positive dependence FDR < my - q/m
e Geneal dependence FDR < (1 +1/2+---+1/m)-my-q/m

Simulations:

e Robustness to dependence
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BH ‘95

Interpretation of level 0.05 FDR control

All noise regime (mg = m)

e Any discovery is false — FDR = FWE
e (.95 probability of not making any false discovery

Signal and noise regime (my < m)

e Many discoveries ~ 0.05 false — FDR < FWE
e A randomly selected discovery is true with prob. 0.95
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Selective inference

Selective vs. simultaneous inference

Benjamini and Yekutieli ‘05: two types of problems can arise when providing
inferences for multiple parameters . . .

e Selective inference — need to provide valid marginal inferences for
parameters that are selected after viewing the data (e.g. microarray
analysis) — solution FDR control

e Simultaneous inference — need to provide valid inferences for all of the
the parameters (e.g. subgroup analysis) — solution FWE control
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Selective inference

Selective inference a new idea?

e Joannidis, Plos Medicine ‘05
“Why Most Published Research Findings Are False”

e Soric, JASA ‘89
“ ... Itis mainly the discoveries that are reported and included into
science . .. unless the proportion of false discoveries is kept small there
is danger that a large part of science is untrue”

e Tukey and Scheffe ‘53
post-hoc analysis
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Selective inference

Post-hoc analysis — Scheffe’s method

e 1= (py--- ) is a vector of k treatment effects, mean response in i’th
treatment group is ji; ~ N(u;, 0%/n)

e After viewing the data (and ANOVA) a contrast, ape = ajpg + - - - apfik
witha; + - - - 4+ a; = 0, is selected

Selective inference problem: how do we use data to select ap, test its
significance, and construct a confidence interval for it?

Solution: base inference on confidence interval

CISchejj"e(al'l'-/ O() - a“ + \/H;‘ \/(k - 1) : Fl—a,k—l,N—k

offering simultaneous coverage for all contrasts

Pr{Va : ap € Clscpepe(ap, )} > 1 — o
L f
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Selective inference

Post-hoc analysis — Tukey’s method

Same setting, but instead of all contrasts
consider only pairwise comparisons ...

Solution: base inference on confidence interval

. R -2
Cltikey (1t — 1y, @) i= f1; — fi; & T Gl—ak—1,N—k/2

offering simultaneous coverage for all pairwise comparisons

Pr{vi#j: pi— 1 € Clukey (i — pj, @)} 2 1 — v
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Selective inference

FDR control — same problem slightly different objective

e Post hoc analysis is concerned with valid inference for a single contrast
(possibly the most significant contrast) that is specified according to the
data

e Modern applications (microarrays / GWAS / fMRI / nonparametric
regression) are concerned with marginal inferences for multiple
parameters that are selected after first considering m pre-specified
parameters

e And indeed ... Williams, Jones and Tukey *99 suggest using the BH

procedure for discovering state-to-state (pairwise) differences in
educational achievement.
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Selective inference

Selective inference framework

Benjamini and Yekutieli ‘05:

e m parameters 0; - - - 0, with corresponding estimators 77 - - - T}y,
e There is a selection rule S(T - - - Tp,) C {1 ---m}

e Goal: to construct valid marginal confidence interval for the selected
parameters: 0;,i € S(Ty---Ty)

Yekutieli (TAU)
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Selective inference

Continuous parameter-value simulation

Generate m = 10,000 iid (6;, ¥;):
e Parameter 0; ~ m(0;)

e 316 1. e L0l
7(0) = 09.¢ " poq e T 1)

e Observations T; ~ N(6;, 1)
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Selective inference

Entire data set

azis 1093

Observed T
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Selective inference

Marginal 0.95 CI’s for selected parameters

< o 877 selected parameters

Effect size

Observed T
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Selective inference

CTI’s fail to cover 0.95 of the selected parameters

< - 331/877 non-covered parameters

Effect size

Observed T
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Selective inference

Valid marginal CI’s for selected parameters

e Benjamini and Yekutieli ‘05 suggest the False Coverage-statement Rate
as a measure for the validity of CI’s constructed for the selected
parameters

FCR = E{V/max(R, 1)}

where R = |S(T - - - Ty)| and V is the number of non-covering CI's

e Main result: for independent 7" and any selection rule S constructing
marginal 1 — R - g/m CUs for each selected parameter ensures FCR < ¢

( = FCR adjusted CI’s)
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Selective inference

FCR adjusted CI'’s for selected parameters

Effect size
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Selective inference

= level 0.05 BH procedure
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Selective inference

Characterizing the BH procedure by FCR adjusted CI’s

BH procedure is most liberal testing procedure that ensures sign
determination of all FCR-adjusted CI's

e Another BY ’05 result: for independent T and any selection rule S that

is at least as liberal as the BH procedure constructing FCR-adjusted CI’s
ensures ¢/2 < FCR < g

e Q: what is the FDR of the BH procedure in this example? and what is the
directional FDR of the BH procedure? (Answers: 0, < g)
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Selective inference

Summary

e The FDR/FCR are frequentist measures for validity of conditional
statistical inference following selection

e the BH procedure provides is a method for making statistical discoveries
that ensures that the discoveries are marginal true

e Next: a Bayesian perspective
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Bayesian FDR’s

The two group mixture model

Introduced in Efron et al. ’01, see also Efron *10:

e Hypotheses vector H = (Hy,--- , H,,), statistic vector Z = (Z1, -+ ,Zy)
o H Y Bernouli(1 — )

H; = 0 corresponds to a true null hypothesis, in which case Z;~ fy
where usually fo = N(0, 1)

H; = 1 corresponds to a false null hypothesis in which case Z;~ f;
If the statistics are p-values then Z; = ®~'(P;) — fo = N(0,1)
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Bayesian FDR’s

Multiple testing

e Multiple testing procedure
R<Z) - (Rl (Z), T 7Rm(Z)) € {07 1}m

e R; =1 corresponds to declaring that H; = 1, i.e. rejecting the null
hypothesis that H; = 0 and making a statistical discovery.

e V; =0 ifthe discoveryistrue,ie. R, =1ANH; =1

e V; =1 ifthe discovery is false ( = type L error),i.e. R, =1 ANH; =0

e Number of discoveries R =R; + -+ R,
number of false discoveries V=V;+---+V,

Yekutieli (TAU) 35/57



Bayesian FDR’s

Natural measure for type I error rate?

For m = 1 consider a a = 0.05 significance test: ( = level 0.05 BH proc.)
Ry = I(1.96 < |Z;))
first let’s look at the BH *95 FDR

FDR = Ezjg{V/max(R,1)}

e For H =0, FDR =Pr(R; =0) =0.05and for H; = 1, FDR =0

e Thus for 7o = 0.90 and Pr(R; = 1|H; = 1) = 0.50

0.90 - 0.05
Pr(Hy = Ok, = 1) = = 0474
r(Hy =0lRy = 1) = o0 e 010050
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Bayesian FDR’s

Bayesian FDR

For “marginal” multiple testing procedures R;(Z;T,d) = I{T(Z;) < §}

e Efron et al ’01 ( = pFDR in Storey *02-’03):

Fdr:=Pr(H;=0|R;, = 1)

e AsforR >0,V ~ Binom(R, Fdr):

Fdr = EHVZ(V/R|R > 0)
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Bayesian FDR’s

Relation between Bayesian FDR and the BH FDR

Expressing

FDR = Ezp{V/max(R,1),R > 0} + Ezz{V/max(R,1),R = 0}
= Egu{V/RIR >0} Pr(R>0) + 0

Yields

Fdr = B {E7(V/R | R > 0)} = Ey{FDR / Pr(R > 0)}

Thus for large m if data is not pure noise (i.e. VH, Prz (R > 0) = 1)

Fdr ~ FDR
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Bayesian FDR’s
Bayes rule for classification in the two group mixture model
e The loss function for incorrectly classifying H; is

Lri(H,Z) =\ - 1(H; = 0,Ri(Z) = 1) + X2 - [(H; = 1,R{(Z) = 0)
e The average risk is

= EzlEnz{\ - I(Ri(2)

— 1)- I(H; = 0)}

+ Engdda - I(R(Z) = 0) - 1(H; = 1)}]
= Ez{\ - I(Ri(Z) = 1) - Pr(H; = 0]2)
+ X - I(Ri(Z) = 0) - Pr(H; = 1|Z)}

And Vz the Bayes rule is R;(z) that minimizes the underlined expression

Yekutieli (TAU)
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Bayesian FDR’s

Bayes rule for classification .... (cont.)

e Note that forj = 0, 1

f(Z|H; = j) - Pr(H; = j)
f(Z)
Wi f(Zy) - f(ZilHi =) -

N () S o< fE)

e Thus the Bayes rule can be expressed as R;(z) minimizing

Pr(H; = j|Z) =

At I(Ri(z) = 1) - fo(zi) - mo + A2 - I(Ri(z) = 0) - fi(zi) - ™1

7o - fo(z ) )\2

R =1 ok
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Bayesian FDR’s

Bayes rule for classification .... (cont.)

e For
f(zi) =m0 - folz) + 71 - fi(z)
defining the local FDR (Efron '01)

fdr(zi) = 7o - fo(z)/f(z) = Pr(H; = 0|z;)

mo - fol(zi) _  fdr(z)
- filz) 1 —fdr(z;)

e The Bayes rule for classifying H; can also be expressed

Rlas fir, 50, %)) = 1 ) < 121}

Yekutieli (TAU)
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Bayesian FDR’s

Fdr = g classification/selection/rejection/discovery rules

e Forany R;(Z;T,9)

Fdr = PI‘(HZ' = 0|Rl = 1) = EZi|Ri=1 P]‘(Hl' = 0|Zl)
= Ezr=1fdr(Z;)

e A Fdr = g classification procedure is R;(Z;; T, 6(q)) for which
Fdr = PI'(H[ = O|R, = 1) = (.

e In particular, the Bayes classifier can be specified by its Fdr level,
instead of by \; and ). i.e. the Fdr = g Bayes classifier is

Ri(Zi; fdr, 6(q)) = I{ fdr(zi) < 0(q)}

with Fdr = ¢q

Yekutieli (TAU)
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Bayesian FDR’s

The Fdr = q Bayes classifier is optimal

Of all R;(Z;; T, 0) with Fdr = g, the Bayes classifier has

e Maximum power to make discoveries
e and minimum type II error

Fnr =Pr(H; = 1|R; = 0)

(Storey ’07; Sun and Cai ’07; Efron *10; Heller and Yekutieli *13)
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Bayesian FDR’s

Is Bayesian FDR control valid?

Bearable sufficient scenario:

e The data and parameters are a single realization of (H,Z)

e Regard (H;,Z;) fori=1---m exchangeable
Is exchangeability necessary?

1. Finner: FDR control doesn’t make sense without exchangeability

2. The two group model holds for a randomly chosen (H;, Z;) component
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Bayesian FDR’s

Return to True null and False null p-values simulation

m =10, my/m = 0.9
fori=1---mg, i =0

fori=mo+1---m,pu; =3

Vector of effect Estimators Z = (Z; - - - Z,,), Z; % N(pi, 1).
P-value vector P = (Py - - Py), P = 1 — ®(Z)),

testing Ho; : 6; =0vs. Hy; : 0; > 0.
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Bayesian FDR’s

The densities of z; and the fdr
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Bayesian FDR’s

Fdr = 0.600 for classifying rule R, = I(1 < Z;)
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Bayesian FDR’s

R; = 1(2.689 < Z,) is classification rule with Fdr = 0.05
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Bayesian FDR’s

How do we control Fdr?

With empirical Bayes:

1. R locfdr package applied to Z; - - - Z,,, that estimates 7o, fp, f1 and
uses them to compute Fdr(z), the Fdr of the rejection rule R; = I(z < Z;)

2. R gvalue package applied to P; - - - P,, to estimate gvalue(p), the Fdr of
the rejection rule R; = I(P; < p), that equals
Pr(H;=0,P;<p) Pr(P;<plH;=0) 7

Pr(H; = O|P; < p) = -
(=0 <) Pr(Pi < p) Pr(P; < p)

by

_ p-#o o .
= = . . . < ;
gvalue(p) P <plm’ with 1o =2 -#{i: 0.5 < P;}
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Bayesian FDR’s

locfdr density estimates
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Bayesian FDR’s

locfdr qvalue estimate
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Bayesian FDR’s

gvalue qvalue estimate
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Bayesian FDR’s

Fdr = 0.05 rejection rules
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Bayesian FDR’s

Results for Fdr = 0.05 rejection rules

e Bayes classifier:

2005 = 2.689 — V/R =338/6,568 = 0.0515
e Bayes classifier based on the locfdr estimate:

2005 = 2.739 — V/R =284/6,332 = 0.0445
e Bayes classifier based on the gvalue estimate:

2005 = 2.683 — V/R =346/6609 = 0.0524
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Bayesian FDR’s

Connection to BH procedure

From a Bayesian perspective, the BH procedure is a  Fdr = ¢
classifier R;(Z;; T,0(q)) = I{T(Z;) < 6(q)} for which

1. the test statistic is the p-value T(Z;) = P;

2. the critical value is 0(z; ¢) = P(») is the level ¢ BH critical value for
which
P(r)

#{i: Pi<pg}t/m

<q

Note that if we further apply the adaptive BH procedure that includes an
estimate of my we get the gvalue critical value:

p such that

|/\ =‘>

p:
#{i: Pi }/m a
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Bayesian FDR’s

BH procedure results

We applied the BH procedure using the R p.adjust package

e Results for level ¢ = 0.05 BH procedure:

2005 = 2.726 — V /R =300/6,402 = 0.0469
o 7o =2-#{i: 0.5 < P;}/100,000 = 0.901
e Results for level ¢ = 0.05/0.901 BH procedure:

2005 = 2.681 — V/R =348/6,616 = 0.0526

Yekutieli (TAU)
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Bayesian FDR’s
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